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J. Phys.: Condens. Malter 6 (1994) L651-L655. F’rinted in the UK 

LETTER TO THE EDITOR 

On the motion of a wave packet in a model lateral 
superlattice potential 

K Stratfordt and J L Beeby 
Lkpmment of Physics and Astronomy, University of Leicester, University Road, Leicester 
LEI 7RH. UK 

Received 10 August 1994 

Abstract. A numerid integration of the time-dependent Schr8dinger equation is used to 
investigate the motion of an electron wave packet under the influence of a model two-dimensional 
antidot anay potential at zero temperahue. It is shown that the motion is strongly modified by a 
transverse magnetic held in the regime where the magnetic length is similar to the antidot lanice 
constant. The intensity dishibution shows that the wave function exhibits a number of complex 
forms. Transport in this regime is discussed in the light of the results 

Semiconductor heterojunctions in which the freedom of a two-dimensional electron gas 
(ZDEG) is curtailed by the imposition of a periodic repulsive scattering potential have 
been termed lateral surface superlattices or, more simply, lateral superlattices (LSLS) [I]. 
Experimental measurements in this type of mesoscopic system have revealed a number of 
features which are not observed in the unmodulated ZDEO, namely, additional peaks in the 
magnetoresistance at low field [Z]. These features have been explained in terms of a decrease 
in electron mobility associated with magnetic fields at which the classical cyclotron orbit of 
electrons encompasses certain integer numbers of antidots comprising the lattice [3]. If the 
cyclotron orbit diameter and antidot lattice constant, a, are comparable, then periodic orbits 
of varying form around a single antidot are possible [4]. Such models employ classical or 
semiclassical approximations in which a ‘billiard-like’ electron is scattered in some fashion 
by the externally imposed potential. In a transverse magnetic field the electron may be 
viewed as executing a skipping orbit around or between antidots [5], its trajectoqJ perhaps 
becoming chaotic in some cases. In contrast to eleckons in periodic orbits which are said 
to be ‘pinned‘, electrons with chaotic trajectories can traverse the entire area of the antidot 
lattice. Pinned electrons are not able to respond to an applied electric field and make no 
contribution to the conductance: it is possible to estimate experimentally the fraction of 
caniers for which this is the case, the result being in the region of 10-20% [6]. 

It is the purpose of thii letter to describe the results of a numerical simulation within 
a model which relaxes the assumption that the width of the electron wave packet is small 
on the scale of the antidot lattice spacing. For a typical experimental situation (where a 
is some hundreds of nanometres) in low or moderate magnetic fields this approximation 
is quite reasonable and the classical dynamics holds good. However, the approximation 
will fail at high fields, where quantum mechanical effects are important. An effective 
approach to the solution of the dynamics of an electron wave packet of finite width under 
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the influence of an extemal potential is provided by the numerical integration of the time- 
dependent Schrtidinger equation. It will be shown that at different applied magnetic fields 
the motion of the wave packet is modified in a interesting manner. The influence of the 
observed behaviour on the transport properties of a device in the high-field regime where the 
magnetic length is a significant fraction of the antidot lattice constant (where a is perhaps 
some tens of nanometres) is discussed. It is in this regime that Hofstadter [7] demonstrated 
the existence, in theory, of a self-similar energy spectrum for electrons. Whether this can 
be observed in a real system as one moves from the classical to the quantum mechanical 
regime remains something of an open question. 

The Hamiltonian for the single-electron system under consideration is 7 i  = + = 
(p - eA)’/2mY + V,,(x, y). where an effective-mass approach has been adopted. For the 
present calculation it is convenient to employ the symmetric gauge A = ( -By/2,  Bx/2,0)  
corresponding to a transverse magnetic field strength B .  A square antidot lattice is 
considered [SI, for the purposes of which a continuous model extemal potential of the 
same form as that of [3] is used, namely, 

( 1 )  

In this model, the steepness of the potential is controlled by the parameter p ,  while Vo 
represents the maximum value of the potential at the centre of the antidots. We also follow 
[3] in choosing the value of Vo in such a way that the ratio of the antidot diameter at the 
Fermi energy to the superlattice spacing is one third, so as to mimic a typical experimental 
situation. A value of ,9 = 16 is used throughout, giving rise to a reasonably large space 
between antidots in which the potential may be considered to be negligible. 

In view of the fact that we wish to investigate the analogue of the classical cyclotron 
orbit, it is appropriate to make use of an initial wave packet of annular form. To this end, 
we start by considering eigenfunctions for an electron occupying the lowest Landau level 
in a potential-free two-dimensional system subject to transverse magnetic field B 191. In 
the symmetric gauge and polar coordinates this is written as 

(2) 
where we have introduced the magnetic length Ig = w. The width of the wave packet 
is of order I S ,  increasing from Ig as a increases from zero. For this wave function the 
orbital angular momentum is quantized according to L, = Aa where (Y = 0,1,2.. .. For 
the desired annular form, it is easily seen that we must have the quantum number (Y > 0. 
Furthermore, it is readily established that the squared intensity of the initial function is a 
maximum at a radial distance ro = 6 1 1 ,  from the origin. In what follows BO is defined 
so that ro = a / 2  for a given a, that is, the initial wave function has maximized intensity 
midway between adjacent antidots. 

The time propagation scheme used is one based on an expansion of the time evolution 
operator exp[-i7irfi] as a truncated series of Chebyshev polynomials, following Tal- 
Ezer and Kosloff [IO]. Thii scheme has the advantage of being able to accommodate 
a Hamiltonian containing magnetic field te rm in an efficient manner. At time r = 0 the 
centre of the initial annular function is arranged to be coincident with the central antidot 
potential maximum. The parameters described above for the potential and initial wave 
packet ensure that there is only a small overlap between them. The system is allowed to 
evolve on for a time that is reasonably long on the scale of the classical cyclotron orbit 
period Tc = zirm*/eB. 

,Figure l(a) shows a schematic contour plot (plan view) of the potential described by 
(1); it can be Seen that the antidot lattice appears relatively ‘open’, that is, the potential is 

v,&, y )  = vo[cos(zirx/a) cos(~ny/a)]p. 

qa(r, 4) = (2na !Z~) -1 /Ze -1~~e- r~ /~  ( r ’ / 2 ~ 3 “ ’ ~  
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Figure 1. A contour plot of the potential described by (1) with f3 = 16 is shown in (a). 
Superimpsed on tbis one should imagine the initial wave packet, the squared intensity of whieh 
is shown in (b). The squared intensity of the final wave function after a time UT, is platted for 
various values of the parameter E/&: (c) 1.0, (d) 0.9, (e) 0.8, and (0 0.7. 

negligible over much of the area. Superimposed on the external potential one must imagine 
the initial wave packet which has an annular form, the squared intensity IY(r, 4)12 of which 
is shown in figure l(b). In the examples shown the orbital angular momentum quantum 
number is chosen to be LY = 2, so corresponds to a magnetic length I D  = a/4. The 
remaining figures l(cj(f) show the propagated wave function at a time i = 15T. in an 
applied field of B for differing values of B/Bo. 

Figure l(c) depicts the situation for BIB0 = 1. Here, we can see. that the initial wave 
function has been scattered to some extent by the antidot lattice but retains much the same 
form (compared with t = 0) in that the majority of the intensity remains in the region 
around the cenhal antidot. (It should be noted that the integrated norm over the whole area 
of the wave function remains constant in time, as expected.) The central minimum of the 
final wave packet is still present, but small, while there is some evidence of a build-up 
of intensity in the potential free region diagonally between antidots. If the value of 1, 
(and consequently ro) is increased then, as one would expect, the initial wave function is 
scattered to a greater extent [ l l] .  It is necessarily the case that the rotational symmetry 
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of the initial situation should be preserved, as both wave function and potential share this 
symmetry around the central antidot. That some small asymmeq appears in the result after 
15Tc is due to a residual asymmetry introduced by the discretization of the problem on a 
finite grid and is ignored as we are interested in the more general, largescale, features. 
However, the growth of such asymmetry could be taken as an indication of the stability of 
the solution. 

The value of B/Bo is now reduced so that, in the classical picture, an electron tends to 
take up a cyclotron orbit of greater diameter than that for BIB0 = 1. The result is shown 
is figures l(d) and l(e) where BIB0 is equal to 0.9 and 0.8 respectively. The final wave 
function in both these cases shows a markedly different form to that seen in figure I(c) for 
BIB0 = 1. In I(d) it can be seen that areas of high intensity form a striking geometric 
pattern around the scattering centres in positions diagonally opposite the central antidot, 
while in l(e) the final wave function is more concentrated about the four nearest-neighbour 
antidots. If BIB0 is reduced further to 0.7 as in figure 10 the final wave function shows 
no definite pattern. More intensity moves towards the sides of the grid box which suggests 
that the wave function is not constrained to move about the central antidot as in (d) and 
(e); a larger grid is required to see if any larger-scale pattern evolved as it is possible that 
propagation becomes unphysical in this calculation as significant intensity reaches the edge 
of the grid. 

The pinning orbits envisaged in the classical models where the cyclotron orbits encircle 
integer numbers of antidots are all essentially circular in character. The present results 
show that such a picture. is clearly inadequate when I S  becomes a significant fraction of a.  
Considerably more complex orbits may be imagined in this case, enclosing a larger number 
of antidots over a wider area. It is possible that electrons in these more complex orbits 
will remain pinned when an elecaic field is applied, as suggested by the, forms seen in (d) 
and (e). A large number of different pattems of this type are conceivable if the number of 
antidots is increased giving rise to more possibilities for pinning. In this way one would see 
the suppression of the classically chaotic motions exhibited by the billiard model, which is 
characteristic of a quantum mechanical system. This would clearly be reflected in the fine 
stnucture of the observed magnetoresistance via the removal of mobile electrons following 
chaotic trajectories. 

There are a number of factors which are not included in the calculation at this time, where 
we have considered a singleelectron wave packet moving in a square lattice. Different 
lattice geometry or disordered lattices 1121 could easily be studied within the present 
approach but, owing to the nature of the propagation scheme, the modelling of the Coulomb 
repulsion in a many-electron system would be more problematic. However, it has been 
shown 1131 that the time-dependent approach is efficacious in the calculation of properties 
more directly related to experiment in two dimensions, namely the conductance. It is clear 
that the finite. width of the electron wave packet is important and should be addressed when 
devices become small enough that I S  - a at moderate magnetic fields. 
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